
UNIT-IV

C Preprocessor

The C preprocessor is exactly what its name implies. It is a program that

processes our source program before it is passed to the compiler.

Features of C Preprocessor

There are several steps involved from the stage of writing a C program to the stage of

getting it executed.

The preprocessor offers several features called preprocessor directives.

Each of these preprocessor directives begin with a # symbol. The directives can

be placed anywhere in a program but are most often placed at the beginning

of a program, before the first function definition. We would learn the following

preprocessor directives here:

(a) Macro expansion

(b) File inclusion

(c) Conditional Compilation

(d) Miscellaneous directives

Macro Expansion

Macro represents a group of commonly used statements in the source

programming language. Macro Processor replaces each macro instruction with the

corresponding group of source language statements. This is known as the expansion of

macros.

You can define a macro in C using the #define preprocessor directive.

Have a look at the following program.

#define UPPER 25

main()

{

int i ;

for (i = 1 ; i <= UPPER ; i++)

printf ("\n%d", i) ;

}

In this program instead of writing 25 in the for loop we are

writing it in the form of UPPER, which has already been defined

before main() through the statement,

#define UPPER 25

This statement is called ‘macro definition’ or more commonly, just a ‘macro’.

Macros with Arguments

The macros that we have used so far are called simple macros.

Macros can have arguments, just as functions can. Here is an

example that illustrates this fact.

Function-like macros can take arguments, just like true functions. To define a

macro that uses arguments, you insert parameters between the pair of parentheses in the

macro definition that make the macro function-like. The parameters must be valid C

identifiers, separated by commas and optionally whitespace.

#define AREA(x) (3.14 * x * x)

Macros versus Functions

In a macro call the preprocessor replaces the macro template

with its macro expansion, in a stupid, unthinking, literal way. As

against this, in a function call the control is passed to a function

along with certain arguments, some calculations are performed

in the function and a useful value is returned back from the

function.

File Inclusion

The second preprocessor directive we’ll explore in this chapter is

file inclusion. This directive causes one file to be included in

another. The preprocessor command for file inclusion looks like

this:

#include "filename"

and it simply causes the entire contents of filename to be inserted into the

source code at that point in the program.

(a) If we have a very large program, the code is best divided into

several different files, each containing a set of related

functions. It is a good programming practice to keep different

sections of a large program separate. These files are #included

at the beginning of main program file.

(b) There are some functions and some macro definitions that we

need almost in all programs that we write.

Actually there exist two ways to write #include statement. These

are:

#include

"filename"

#include
<filename>

Conditional Compilation

We can, if we want, have the compiler skip over part of a source

code by inserting the preprocessing commands #ifdef and #endif,

which have the general form:

#ifdef macroname

statement 1 ;

statement 2 ;

statement 3 ;

#endif

If macroname has been #defined, the block of code will be

processed as usual; otherwise not.

Therefore the solution is to use conditional compilation as

shown below.

main()

{

#ifdef OKAY

statement 1 ;

statement 2 ; /* detects virus */

statement 3 ;

statement 4 ; /* specific to stone virus */ #endif

statement 5 ;

statement 6 ;

statement 7 ;

}

Here, statements 1, 2, 3 and 4 would get compiled only if the

macro OKAY has been defined, and we have purposefully

omitted the definition of the macro OKAY. At a later date, if

we want that these statements should also get compiled all

that we are required to do is to delete the #ifdef and #endif

statements.

#if and #elif Directives

The #if directive can be used to test whether an expression evaluates

to a nonzero value or not. If the result of the expression is nonzero,

then subsequent lines upto a #else, #elif or #endif are compiled,

otherwise they are skipped.

A simple example of #if directive is shown below:

main()

{

#if TEST <= 5

statement 1 ;

statement 2 ;

statement 3 ; #else

statement 4 ;

statement 5 ;

statement 6 ; #endif

}

Arrays

What are Arrays

Suppose we wish to arrange the percentage marks obtained

by 100 students in ascending order. In such a case we have two

options to store these marks in memory:

(a) Construct 100 variables to store percentage marks obtained by
100 different students, i.e. each variable containing one

student’s marks.

(b) Construct one variable (called array or subscripted variable)

capable of storing or holding all the hundred values.

Thus, an array is a collection of similar elements. These similar

elements could be all ints, or all floats, or all chars, etc. Usually,

the array of characters is called a ‘string’.

Ex:

 int marks[30] ;

Accessing Elements of an Array

The number in the brackets following the array name. This number specifies the element’s

position in the array. All the array elements are numbered, starting with 0. Thus, marks[2] is not

the second element of the array, but the third.

Array Declaration

To begin with, like other variables an array needs to be declared so

that the compiler will know what kind of an array and how large

an array we want. In our program we have done this with the

statement:

for (i = 0 ; i <= 29 ; i++)

{

printf ("\nEnter marks ") ;

scanf ("%d", &marks[i]) ;

}

To fix our ideas, let us revise whatever we have learnt about arrays:

(a) An array is a collection of similar elements.

(b) The first element in the array is numbered 0, so the last

element is 1 less than the size of the array.

(c) An array is also known as a subscripted variable.
(d) Before using an array its type and dimension must be declared.

(e) However big an array its elements are always stored in

contiguous memory locations. This is a very important point

which we would discuss in more detail later on.

More on Arrays

Array is a very popular data type with C programmers.

Array Initialisation

Ex;

int num[6] = { 2, 4, 12, 5, 45, 5 } ;

int n[] = { 2, 4, 12, 5, 45, 5 } ;

float press[] = { 12.3, 34.2 -23.4, -11.3 } ;

Note the following points carefully:

(a) Till the array elements are not given any specific values, they

are supposed to contain garbage values.

(b) If the array is initialised where it is declared, mentioning the

dimension of the array is optional as in the 2nd example

above.

Array Elements in Memory

Consider the following array declaration:

int arr[8] ;

 What happens in memory when we make this declaration? 16

bytes get immediately reserved in memory, 2 bytes each for the 8 integers.

Bounds Checking

 In C there is no check to see if the subscript used for an array

exceeds the size of the array. Data entered with a subscript exceeding the array

size will simply be placed in memory outside the array; probably on top of other

data, or on the program itself.

Passing Array Elements to a Function

 Array elements can be passed to a function by calling the

function by value, or by reference. In the call by value we pass values of array

elements to the function, whereas in the call by reference we pass addresses of

array elements to the function.

/* Demonstration of call by value */

main()

{

int i ;

int marks[] = { 55, 65, 75, 56, 78, 78, 90 } ;

for (i = 0 ; i <= 6 ; i++)

 display (marks[i]) ;

}

display (int m)

/* Demonstration of call by reference *

/ main()

{

int i ;

int marks[] = { 55, 65, 75, 56, 78, 78, 90 } ;

for (i = 0 ; i <= 6 ; i++)

disp (&marks[i]) ;

}

disp (int *n)

{

{

printf ("%d ", m) ;

}

And here’s the output...

55 65 75 56 78 78 90

printf ("%d ", *n) ;

}

And here’s the output...

55 65 75 56 78 78 90

Pointers and Arrays

(a) Addition of a number to a pointer. For example,

int i = 4, *j, *k ;

j = &i ;

j = j + 1 ; j

= j + 9 ; k

= j + 3 ;

Now we will try to correlate the following two facts, which we

have learnt above:

(a) Array elements are always stored in contiguous memory

locations.

(b) A pointer when incremented always points to an immediately

next location of its type.

Passing an Entire Array to a Function

/* Demonstration of passing an entire array to a function */ main()

{

int num[] = { 24, 34, 12, 44, 56, 17 } ;

dislpay (&num[0], 6) ;

}

display (int *j, int n)

{

int i ;

for (i = 0 ; i <= n - 1 ; i++)

{

printf ("\nelement = %d", *j) ;

j++ ; /* increment pointer to point to next element */

}

}

Two Dimensional Arrays

A two-dimensional array in C can be thought of as a matrix with rows

and columns. The general syntax used to declare a two-dimensional array is: A

two-dimensional array is an array of several one-dimensional arrays. Following

is an array with five rows, each row has three columns:

int my_array[4][2];

col. no. 0

col. no. 1

row no. 0 1234 56

row no. 1 1212 33

row no. 2 1434 80

row no. 3

1312 78

Initialising a 2-Dimensional Array

Syntax:

data_type array_name[rows][columns];

ex:

 int stud[4][2];

col. no. 0

col. no. 1

row no. 0 1234 56

row no. 1 1212 33

row no. 2 1434 80

row no. 3 1312 78

EX:

int arr[2][3] = { 12, 34, 23, 45, 56, 45 } ;

int arr[][3] = { 12, 34, 23, 45, 56, 45 } ;

RESULT:

12 34 23

45 56 45

s[0][0] s[0][1] s[1][0] s[1][1] s[2][0] s[2][1] s[3][0] s[3][1]

65508 65510 65512 65514 65516 65518 65520 65522

Memory Map of a 2-Dimensional Array

1234 56 1212 33 1434 80 1312 78

Let us reiterate the arrangement of array elements in a two-

dimensional array of students, which contains roll nos. in one

column and the marks in the other.

Pointer to an Array

If we can have a pointer to an integer, a pointer to a float, a pointer to a char, then can we not have

a pointer to an array.

/* Usage of pointer to an array */ main(

)

{

int s[5][2] = {

}

;

int (*p)[2] ;

int i, j, *pint ;

{ 1234, 56 },

{ 1212, 33 },

{ 1434, 80 },

{ 1312, 78 }

for (i = 0 ; i <= 3 ; i++)

{

p = &s[i] ;

pint = p ;

printf ("\n") ;

for (j = 0 ; j <= 1 ; j++)

printf ("%d ", *(pint + j)) ;

}

}

And here is the output...

1234 56
1212 33

1434 80
1312 78

Passing 2-D Array to a Function

There are three ways in which we can pass a 2-D array to a function.

These are illustrated in the following program.

/* Three ways of accessing a 2-D array */ main(

)

{

int a[3][4] = {

} ;

clrscr() ;

display (a, 3, 4) ;

show (a, 3, 4) ;

print (a, 3, 4) ;

}

1, 2, 3, 4,

5, 6, 7, 8,

9, 0, 1, 6

display (int *q, int row, int col)

{

int i, j ;

for (i = 0 ; i < row ; i++)

{

for (j = 0 ; j < col ; j++)

printf ("%d ", * (q + i * col + j)) ;

printf ("\n") ;

}

printf ("\n") ;

}

show (int (*q)[4], int row, int col)

{

int i, j ;

int *p ;

for (i = 0 ; i < row ; i++)

{

p = q + i ;

for (j = 0 ; j < col ; j++)

printf ("%d ", * (p + j)) ;

printf ("\n") ;

}

printf ("\n") ;

}

print (int q[][4], int row, int col)

{

int i, j ;

for (i = 0 ; i < row ; i++)

{

for (j = 0 ; j < col ; j++)

printf ("%d ", q[i][j]) ;

printf ("\n") ;

}

printf ("\n") ;

}

And here is the output…

1 2 3 4

5 6 7 8

9 0 1 6

1 2 3 4

5 6 7 8

9 0 1 6

1 2 3 4

5 6 7 8

9 0 1 6

Three-Dimensional Array

int arr[3][4][2] = {

{

}

,

{

}

,

{

}

} ;

{ 2, 4 },

{ 7, 8 },

{ 3, 4 },

{ 5, 6 }

{ 7, 6 },

{ 3, 4 },

{ 5, 3 },

{ 2, 3 }

{ 8, 9 },

{ 7, 2 },

{ 3, 4 },

{ 5, 1 },

65478 65494 65510

A three-dimensional array can be thought of as an array of arrays of arrays.

 would possibly help you in visualising the situation better.

Figure 8.9

Again remember that the arrangement shown above is only

conceptually true. In memory the same array elements are stored

linearly as shown in Figure 8.10.

0th 2-D Array 1st 2-D Array 2nd 2-D Array

2 4 7 8 3 4 5 6 7 6 3 4 5 3 2 3 8 9 7 2 3 4 5 1

Figure 8.10

2nd 2-D Array

1st 2-D Array

0th 2-D Array

8

7

2

7

3

5

4

8

4

6

6

4

3

9

2

4

1

